131 research outputs found

    Directional clustering through matrix factorization

    No full text
    This paper deals with a clustering problem where feature vectors are clustered depending on the angle between feature vectors, that is, feature vectors are grouped together if they point roughly in the same direction. This directional distance measure arises in several applications, including document classification and human brain imaging. Using ideas from the field of constrained low-rank matrix factorization and sparse approximation, a novel approach is presented that differs from classical clustering methods, such as seminonnegative matrix factorization, K-EVD, or k-means clustering, yet combines some aspects of all these. As in nonnegative matrix factorization and K-EVD, the matrix decomposition is iteratively refined to optimize a data fidelity term; however, no positivity constraint is enforced directly nor do we need to explicitly compute eigenvectors. As in k-means and K-EVD, each optimization step is followed by a hard cluster assignment. This leads to an efficient algorithm that is shown here to outperform common competitors in terms of clustering performance and/or computation speed. In addition to a detailed theoretical analysis of some of the algorithm's main properties, the approach is empirically evaluated on a range of toy problems, several standard text clustering data sets, and a high-dimensional problem in brain imaging, where functional magnetic resonance imaging data are used to partition the human cerebral cortex into distinct functional regions

    Accelerated iterative hard thresholding

    No full text
    The iterativehardthresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces several challenges when applied to practical problems. The step-size and sparsity parameters have to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the step-size can be done adaptively as suggested previously, this letter studies the use of acceleration methods to improve convergence speed. Based on recent suggestions in the literature, we show that a host of acceleration methods are also applicable to IHT. Importantly, we show that these modifications not only significantly increase the observed speed of the method, but also satisfy the same strong performance guarantees enjoyed by the original IHT method

    Monte Carlo methods for compressed sensing

    No full text
    In this paper we study Monte Carlo type approaches to Bayesian sparse inference under a squared error loss. This problem arises in Compressed Sensing, where sparse signals are to be estimated and where recovery performance is measured in terms of the expected sum of squared error. In this setting, it is common knowledge that the mean over the posterior is the optimal estimator. The problem is however that the posterior distribution has to be estimated, which is extremely difficult. We here contrast approaches that use a Monte Carlo estimate for the posterior mean. The randomised Iterative Hard Thresholding algorithm is compared to a new approach that is inspired by sequential importance sampling and uses a bootstrap re-sampling step based on importance weights

    Sparse matrix decompositions for clustering

    No full text
    Clustering can be understood as a matrix decomposition problem, where a feature vector matrix is represented as a product of two matrices, a matrix of cluster centres and a matrix with sparse columns, where each column assigns individual features to one of the cluster centres. This matrix factorisation is the basis of classical clustering methods, such as those based on non-negative matrix factorisation but can also be derived for other methods, such as k-means clustering. In this paper we derive a new clustering method that combines some aspects of both, non-negative matrix factorisation and k-means clustering. We demonstrate empirically that the new approach outperforms other methods on a host of examples

    Guarded Second-Order Logic, Spanning Trees, and Network Flows

    Full text link
    According to a theorem of Courcelle monadic second-order logic and guarded second-order logic (where one can also quantify over sets of edges) have the same expressive power over the class of all countable kk-sparse hypergraphs. In the first part of the present paper we extend this result to hypergraphs of arbitrary cardinality. In the second part, we present a generalisation dealing with methods to encode sets of vertices by single vertices
    corecore